
The Influence of Symbols on Students’ Problem Solving Goals and Activities 
 

Introduction 

 Symbols are the components of the mathematics language that make it possible for a 

person to communicate, manipulate, and reflect upon abstract mathematical concepts.  However, 

the symbolic language is often a cause of great confusion for students (Rubenstein & Thompson, 

2001).  The expert mathematician or math teacher is able to work with and to “see” the 

mathematics through its symbolic representations, whereas students often struggle in this 

endeavor; they may need to be told what to see and how to reason with mathematical symbols 

(Bakker, Doorman, & Drijvers, 2003; Kinzel, 1999; Stacey & MacGregor, 1999).  

The typical approach for helping students who are failing is to provide them with more practice 

problems. However, if instructors are not aware of students’ networks of understanding, more 

practice may only reinforce misunderstanding (DeMarois, 1996; Dubinsky, 1991). It is possible 

that some students are actually developing different, incorrect techniques for problem solving 

due to their personal interpretations of the symbols involved (Gray & Tall, 1994). For example, 

one student in the current study was given the task: Solve for x given the equation 

  x
3
+ 2x ! 4 = 8 . Her first thought on the problem was that she needed to plug 8 in for x, but, she 

claimed,  “I’m used to seeing it set up like f(x), so it’s a little different, but I’ll try it anyway.” 

She immediately saw the symbol 8 as being equivalent to f(8), and plugged 8 in for x by hand 

and then checked it on a graphing calculator and was satisfied with her answer.   The equal sign 

and the 8 were symbols that she ignored, misunderstood, or had given her own meaning in order 

to complete the task. 

The purpose of this study is to conduct a case study of college pre-calculus students’ with 

a focus on their mathematical thinking about symbols in order to identify what students are 



“seeing” in the symbolic structure of a problem.  Using a combination of two conceptual 

frameworks and analysis of students’ discussions of their work on carefully chosen tasks, the 

researcher focuses on clearly articulating, to the extent possible, how or why students solve a 

problem the way they do. The research question to be addressed is: In what ways do the symbols 

in a problem influence college pre-calculus students’ goals, activities, and organization of results 

when solving mathematical problems? 

Literature Review 

Researchers have found that students have preconceived ideas from personal experiences 

about what math symbols are supposed to represent, and often base their interpretations on these 

experiences, falsely assuming that all symbol use is related (Stacey & MacGregor, 1997).  

Teachers and researchers of mathematics education have observed that many difficulties in 

mathematics can be attributed to students’ problems with manipulating and understanding 

algebraic symbols (Driscoll, 1999; Gray & Tall, 1994; Kinzel, 1997; Pimm, 1995; Stacey & 

Macgregor, 1999).  One reason for this difficulty that is identified in the research comes from the 

way in which individuals apply personal meaning to symbols.  According to Kinzel (1999), 

mathematical notations can only be thought of as potential representations that do not become 

representations until someone constructs an interpretation for them. One person’s interpretation 

may differ from another’s.  Students’ own interpretations are based in the prior experiences that 

they bring to the classroom.  As Stacy and MacGregor (1999) point out, students already have 

their own ideas about the uses of letters and symbols in their world, and their prior experiences 

often hinder understanding of mathematical language and notation.  Kirshner and Awtry (2004) 

give evidence that students working with algebraic expressions often respond spontaneously to 

familiarity with visual notational patterns when making decisions instead of relying on 



mathematical rules. Students often do not reason about an overall goal or the concepts involved 

in a problem, but instead look for an implied procedure inherent in the symbols.   

In the context of this study, the term symbol refers specifically to mathematical symbols. 

These include letters, numbers, equal signs, plus and minus signs, parentheses, square root signs, 

etc. (Arcavi, 1994).  Symbolic or algebraic representations involve such symbols and 

manipulations of symbols. Arcavi (1994) and others have identified the underlying 

understanding of algebraic symbols and their uses as symbol sense, which Arcavi explains as “a 

quick or accurate appreciation, understanding, or instinct regarding symbols” (p. 31) that is 

involved at all stages of mathematical problem solving. Working fluently with symbols in 

mathematics requires developing strong symbol sense.  Arcavi does not attempt to formally 

define symbol sense, claiming that to do so is difficult because it interacts with other senses such 

as number sense or function sense, but instead provides an extensive list of examples of what it 

might mean to have symbol sense. Arcavi suggests that many students fail to see algebra and it’s 

symbols as a tool for understanding, communicating, and making connections, and he sees 

development of symbol sense as a necessary component of sense-making in general in 

mathematics. It is a tool that allows students to read into the meaning of a problem and to check 

the reasonableness of symbolic expressions. 

Framework 

  In order to look in depth at students’ problem solving activities and understanding of the 

symbolic language of mathematics, two conceptual frameworks are used as a lens for analysis of 

the data.  The first is Simon, Tzur, Heinz, and Kinzel’s (2004) Reflection on  

Activity-Effect Relationship framework (AER).   This framework, which is an expansion of 

Piaget’s (2001) notion of reflective abstraction, can be used in several ways: a) to help identify 



the goals and activities used in problem solving, b) to explain the process by which changes in 

conceptual structures take place, and c) to inform teaching to guide the design of situations to 

foster specific conceptual changes.  For this study, only the first objective will be used.   It is the 

researcher’s intention to explore the cycle of goal setting, activity choices, and effects that 

students progress through on specific problems and to examine how symbols might directly 

influence this process.   

Clarification of some of the terminology in this framework may be necessary for further 

understanding the use of the framework in analysis: The use of the word conceptions, which is 

equivalent to use of the terms schema or conceptual entities, refers to a learner’s way of knowing 

(Tzur & Simon, 2004).  Conceptions are explicitly goal-directed and are constructed when a 

person perceives or recognizes a certain situation, performs an action or activity associated with 

that situation, and comes up with a desired or expected result.  The term activity refers to the 

mental process, or set of mental processes, that generate mental or observable actions; goal refers 

to a desired state, established by the learner, to which the learner refers for focusing attention and 

evaluating progress in an activity; and effect refers to the experiences that learners consider as 

outcomes of their activity. It is important to keep in mind that the learner’s goals may not be the 

same as a teacher’s goals for the same task, and that effects are structured and constrained by the 

goals and prior conceptions that the learner brings to the situation (Simon et al, 2004; Tzur & 

Simon, 2004).  

The reflection on AER framework is useful for explaining how learners develop new 

mathematical conceptions beyond those already available to them.   It begins with a goal-

directed mental activity, where the learner continually monitors the effects and results of the 

activity. The learner creates mental records of the relationships between each execution of the 



activity and the effect produced.  By reflecting on these records and looking for patterns between 

the activities and their effects, the learner abstracts a new activity-effect relationship, which is 

the basis for a more advanced conception (Simon et al., 2004; Tzur & Simon, 2004).    

The second conceptual framework used in this study involves a subset of Arcavi’s (1994) 

symbol sense constructed by Pierce and Stacey (2001, 2004) called Algebraic Insight.  It is a lens 

that can be used to identify specific instances of symbol sense, particularly at the solution stage 

of problem solving.  The authors divide algebraic insight into two parts: a) algebraic expectation 

is the insight needed for working within a symbolic expression, and b) linking representations is 

the insight needed to make connections between symbolic and graphic forms or symbolic and 

numeric forms.  Table 1 further illustrates the characteristics of both the AER and Algebraic  

Insight frameworks.  Incorporating the instances of algebraic insight is important because the 

stages in AER are often mental processes that are impossible to see directly. The researcher 

 
Table 1. Reflection on AER and Algebraic Insight Frameworks 

Progress in AER  

Setting a Goal 

Selecting an Activity 

Carrying Out the Activity 

Reflecting on Records 

Identifying Patterns 

Abstracting an AER 

Instances of Algebraic Insight  

Identify Objects 

Identify Forms 

Identify Key Features 

Identify Dominant Term 

Know Properties of Operations 

Know Meaning of Symbols 

Know Order of Operations 

Linking Form 

Linking Key Features 



 

cannot know what the students are thinking or understanding, but can try to recognize instances 

of symbol sense from their actions and shared thoughts and use this information to further 

understand their goals, activity choices, and reflections. 

Methods 

 To address the research question for this study, a qualitative case study was conducted 

using six college students who were enrolled in summer sections of a pre-calculus course.  Each 

student participant represents one case.  In this paper, only analysis of the case study for Jill, a 

female sophomore student, will be described.   

Data collection 

The participants took part in a series of different interviews with the researcher over the 

course of five weeks. In an initial interview, the researcher met individually with participants and 

asked questions to gage past experiences and attitudes toward mathematics and observed the 

students working on four algebraic tasks.  Students were encouraged to talk out loud to explain 

their thinking on the tasks, and an interview protocol was followed to ask students about their 

problem solving goals, expectations, strategies, and reflections.    

Three additional meetings involved students working in pairs on their course homework, 

which was completed using an online homework tool called Webassign (North Carolina State 

University, 1997). Homework questions came from students’ textbooks, but only answers were 

submitted online. Students received immediate feedback for their answers, and had ten attempts 

to correctly answer each problem.  The homework sessions took place in a research classroom 

equipped with 18 cameras in the ceiling.  The researcher recorded and observed students’ work 

from a video console in an adjoining room, and tried to have minimal interference in the 



sessions.  This was in following with research that has identified that students may work 

differently if they are being interviewed then they would normally work on their own (Berry, 

Graham, & Smith, 2005).  

The final two interviews were individual meetings following the completion of two 

course tests. Students took tests in the classroom, and within two days, met with the researcher to 

discuss their work. Several problems from the homework that were similar to problems on the 

tests were discussed in detail. The goal was to have students identify and clarify differences in 

their approaches to the problems during the homework and test situations.  To help students 

recall their approaches on the homework, the researcher showed and discussed video clips of the 

homework sessions, asking the participants to explain their goals and activities on the tests and to 

compare these to their work on the homework. 

In each interview, a graphing calculator was available for use if needed. Each interview 

was videotaped, and any work done on the graphing calculator was digitally recorded on a 

computer using Windows Movie-Maker software and a TI-Presenter. Written transcripts of the 

interview and calculator videos were analyzed by the researcher.   

Analysis 

To analyze the data for Jill, transcripts of her work on problems in all three interview 

settings were coded by looking for instances of goal setting and activity choices on the problems.  

To help connect Jill’s goals and activities with her symbol sense, additional coding was done to 

identify instances of algebraic insight, or to identify places where she lacked the algebraic insight 

necessary to work on the task correctly.   Throughout the six interviews, Jill worked on a total of 

29 problems, 21 of which have been coded and evaluated in detail. Several of these will be used 

as examples in the findings below.   



Findings 

With this study, the researcher hopes to provide some answer to the question: In what 

ways do the symbols in a problem influence college students’ goals, activities, and organization 

of results when solving mathematical problems?  In this paper, the findings for Jill’s case study 

will be organized around the three components of this research question. 

 How do symbols influence goals?  

  Jill’s goals as she worked through many of the mathematical tasks were greatly 

influenced by the symbolic structure of the problem.  Symbolic structure refers to any symbol or 

group of symbols that brings to mind some experience and thus some goal and activity for a step 

in the problem.  For example, Jill worked on the task shown in Table 2 on one of the course tests.  

Immediately following the test she met with the researcher to discuss her work.  She shared that 

this problem brought to mind steps that she had memorized, and that her initial goal, given an 

inequality, was to get zero on one side.  However, this goal was altered by the rational structure 

of the problem.  She changed her goal to first get rid of the fraction because she said, “it looked 

funny to her.” Her class notes show these steps next to examples of polynomial inequalities, so it 

is possible that the different symbolic structure had to be adjusted so that she could follow her 

procedural understanding of the problem.  The first row of work in Table 2 shows that she cross-

multiplied to change the structure to a polynomial inequality, and her goal then became to find 

the roots.  To accomplish this, she tried different activities; she first expanded on both sides, 

moved everything to one side and reached the line x+22>0, but she did not complete the problem 

with this method. Instead, she reflected on the effect of her activity and the progress that it was 

making toward her goal, and for her, this form was not conducive for meeting her goal.  Her 

anticipation, based on her previous experiences and recollection of familiar symbolic structures, 



Table 2.  Influence of symbolic structure on Jill’s goals  

Task:  Solve for x: 
  

5(x ! 2)

(x ! 3)
" 4  

STRUCTURE GOAL ACTIVITY WORK 
Rational 

Inequality 

Get zero on one side Get rid of the fraction 
  5(x ! 2) " 4(x ! 3)  

Polynomial 

Inequality 

Find the roots Expand and collect terms 

on one side   

5x !10 ! 4x +12 " 0

x ! 22 " 0
 

Linear 

Inequality 

Find the roots from 

what is inside 

Keep parenthesis and 

collect terms on one side 

5( 2) 4( 3) 0

2,3

x x

x

! ! ! "

=  

x- values Determine the sign 

in the intervals 

Set up a sign chart and 

plug test points into 

left-hand expression 

 

 ! 2
" ###

+ +

3     
# $###  

 

was that she would find the roots by looking at what was in parentheses. Thus, she looked back 

to the previous step where the form did include parentheses, and adjusted her activity and tried 

again. This time she found the roots by pulling them out of the parentheses. 

How do symbols influence activities?  

Another finding related to both the example above and the one in Table 3 is that Jill’s 

activity choices were guided by what she was seeing in the symbols, and these activities often 

led her to succeed in reaching her personal goals despite a lack of algebraic insight.  In the 

problem above, the additive structure of the problem did not hinder her next goal of determining 

the sign of the function before and after each solution.  The existence of the parentheses was 

familiar enough for her to consider this activity as making positive progress towards her goal.  



During the interview, she was shown a video clip of her work on the homework task:  Solve the 

inequality  (x !1)(x + 3)(x + 5) < 0 , and asked to make comparisons.  She said, “The difference 

with that one was it was already factored out whereas this one [on the test] we had to go through 

the steps and factor it out and then find the zeros.”  In other words, she saw the expression in row 

3 of Table 2 as a factored form for the problem. She did not correctly identify the form or pay 

attention to the properties of operations, both of which are important aspects of algebraic insight.  

Instead she allowed the parentheses symbols to serve as a cue for her actions, and even adjusted 

the language for rules of mathematics to justify her work, saying things like “a positive minus a 

positive is always positive” to explain how she found the signs on her sign chart.     

A second example of how Jill’s activities were guided by her familiarity and experiences 

with the symbols instead of algebraic insight comes from the example in Table 3.  This task was 

one that Jill had on both the homework and test, and on which she made the same mistakes in 

both settings. She was given the graph of a quadratic function and asked to find the equation for 

the graph.  Jill had done similar problems in class, and so chose to use an alternate form of a 

quadratic equation and filled in the given values for the vertex (h,k) and another (x,y) point on 

the graph.  The result of her work was the equation   5(x + 2)2
! 3 .  However, she did not see this 

as being in the normal form that the teacher might want, so she wanted to get it into the form 

“y=something x2 plus something x.”  Her first activity choice was a familiar mistake of 

distributing the squared term to inside the parenthesis, but she stopped because the resulting form 

did not meet her stated goal.   Her second attempt was to do the correct expansion, but she then 

demonstrated a lack of algebraic insight with knowing order of operations by subtracting 3 from 

5 in the expression  5(x
2
+ 4x + 2) ! 3.  She sees in the structure two like terms and is combining 

them without attending to rules of mathematics.  She then viewed the video of her work on the  



 
Table 3. Influence of symbols on Jill’s activities.  

Task:  Find the quadratic function whose graph is shown 
STRUCTURE GOAL ACTIVITY WORK 
Quadratic Graph Get quadratic 

function of the 

form y=a(x-h)2+k 

Substitute values for 

parameters and variables 

and solve for a 

  

(!2,!3) = (h,k)

(3,2) = (x, y)
 

  

2 = a(3+ 2)2
! 3

2 = 25a ! 3, a = 5

5(x + 2)2
! 3

 

Alternate form of 

quadratic 

Get in the form 

“y=something x2 + 

something x…” 

Distribute squared term 

 
  5(x

2
+ 4) ! 3  

Quadratic with 

no “x” term 

Get in the form 

“y=something x2 + 

something x…” 

Do binomial expansion 

and then add constant 

terms 
  

5(x
2
! 4x ! 4) ! 3

= 2(x
2
! 4x ! 4)

= 2x
2
+ 8x + 8

 

 

homework where she had made a similar mistake, and discussed what she was thinking when 

doing the test activity:  

J – I was just doing basic subtraction, 5-3.  Oh, that should have been plus 2. 

I – What should have been plus 2? 

J – Instead of it being multiplied by 2 I think it…now I would probably put it as plus 2,  

     like I did here [on the homework]. 

In this last line, she is now seeing something different in what she did on the homework problem, 

and decides that when she subtracted 5-3 on the test, the result should have been added to the 

quadratic instead to get  (x
2
+ 4x + 4) + 2 .  Jill is focused on manipulations that she sees as 

inherent in the symbolic structure of the problem and is not attending to arithmetic rules. It is 

certain that she knows these rules because as soon as the researcher questions the validity of this 



manipulation she decides that this is not allowed and that she should have distributed first and 

then added.  Jill knows the order of operations in general, but chooses the same incorrect action 

on both the homework and test based on what she is seeing in the symbols. 

How do symbols influence the organization of results? 

There were instances will Jill can be seen as abstracting relationships and building 

(mis)conceptions based on how she related to the final answer. There was a need for solutions to 

look familiar for Jill, which is not a surprising finding, but does demonstrate that she had some 

expectation for what the end result of a problem was going to look like.  When the symbolic 

result matched her expectation, such as in Table 1 with the presence of parentheses, or in Table 2 

with the appropriate quadratic form, Jill did not question her activities.  She reflected on her 

activities only in the sense that she made sure the structures that she created matched her 

expected form.   

In the example in Table 4, Jill and her homework partner abstracted an incorrect 

conception of transformations of functions.  The first two homework tasks asked them to find the 

graph of   f (x) = x2
!1 and  f (x) = !x2

!1, which they easily accomplished mentally by recalling 

rules for transformations of functions.  This homework accompanied a lesson on quadratic 

functions, so for tasks 3 and 4 in the table, the teacher’s goal would have been for the students to 

find the vertex or intercepts to identify the graph.  Jill’s work on the first two tasks, however, 

caused her to try to apply the same ideas to tasks 3 and 4.  When she could not do so, Jill decided 

to just graph the functions on the calculator, the results of which can be seen in the table.  Jill’s 

goal was to identify what effect the +2x or –2x terms had on transforming the graph. The activity 

that she used to help was to use the graphing calculator, and the effect of this activity led Jill to 

abstract a relationship between adding or subtracting an x term in the quadratic form and a 



horizontal shift of the graph.  She and her partner both concluded the task assuming that “the x 

term in the middle would shift left and right.”     

 
Table 4. Influence of symbols on Jill’s abstracted conceptions 

Task:  Match graphs with the given equations 
 

  

1. f (x) = x2
!1

2. f (x) = !x2
!1

3. f (x) = x2
+ 2x +1

4. f (x) = x2
! 2x +1

 

STRUCTURE GOAL ACTIVITY WORK 
Quadratic function of 

form   ax
2
+ b  

Identify graph Use transformation 

rules 

Mental visualization of result. 

Successfully matches graphs 

Quadratic function of 

form   ax
2
+ bx + c  

Apply 

transformation 

rules to new form 

Use graphing 

calculator  

 

 

 

Conclusions and Implications 

It is evident in Jill’s work that there were elements in the symbolic structure of the 

problems that directed her toward prior experiences and influenced her goals. The activities that 

she chose were intended to make progress toward that goal, and the effect of each activity was 

reflected upon in the sense that she had to identify the form of the problem again and reevaluate 

the goal to chose the next activity. One implication for teaching that can be drawn from this 

evidence is that inconsistencies exist between teacher’s goals and students’ goals in problem 

solving. Teachers need to be attentive to this in order to help guide students’ goal making and 

activity choices. 



Kirshner (1989) suggests that, for some students, visual cues serve as the dominant 

incentive for syntactic decisions instead of algebra rules.  This idea was especially evident with 

Jill when she confused or ignored rules of algebra to meet her goals.  A detailed look into the 

ways in which students interpret mathematical symbols can hopefully be useful in identifying 

ways to strengthen students’ understanding of symbols and to improve their mathematical 

capabilities. It may also improve college teachers’ awareness of the networks of understandings 

that students have developed about mathematical symbols and they ways in which they learn to 

“see” the mathematics.    
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